The DeepSeek MLA optimizations were contributed by Ke Bao and Yineng Zhang. The torch.compile optimizations were contributed by Liangsheng Yin. 이런 두 가지의 기법을 기반으로, DeepSeekMoE는 모델의 효율성을 한층 개선, 특히 대규모의 데이터셋을 처리할 때 다른 MoE 모델보다도 더 좋은 성능을 달성할 수 있습니다. 이전 버전인 DeepSeek-Coder의 메이저 업그레이드 버전이라고 할 수 있는 DeepSeek-Coder-V2는 이전 버전 대비 더 광범위한 트레이닝 데이터를 사용해서 훈련했고, ‘Fill-In-The-Middle’이라든가 ‘강화학습’ 같은 기법을 결합해서 사이즈는 크지만 높은 효율을 보여주고, 컨텍스트도 더 잘 다루는 모델입니다. DeepSeek 연구진이 고안한 이런 독자적이고 혁신적인 접근법들을 결합해서, DeepSeek-V2가 다른 오픈소스 모델들을 앞서는 높은 성능과 효율성을 달성할 수 있게 되었습니다. 이 DeepSeek-Coder-V2 모델에는 어떤 비밀이 숨어있길래 GPT4-Turbo 뿐 아니라 Claude-3-Opus, Gemini-1.5-Pro, Llama-3-70B 등 널리 알려진 모델들까지도 앞서는 성능과 효율성을 달성할 수 있었을까요? 불과 두 달 만에, DeepSeek는 뭔가 새롭고 흥미로운 것을 들고 나오게 됩니다: 바로 2024년 1월, 고도화된 MoE (Mixture-of-Experts) 아키텍처를 앞세운 DeepSeekMoE와, 새로운 버전의 코딩 모델인 DeepSeek-Coder-v1.5 등 더욱 발전되었을 뿐 아니라 매우 효율적인 모델을 개발, 공개한 겁니다. 1: MoE (Mixture of Experts) 아키텍처란 무엇인가? 먼저 기본적인 MoE (Mixture of Experts) 아키텍처를 생각해 보죠.
deepseek ai china Coder는 Llama 2의 아키텍처를 기본으로 하지만, 트레이닝 데이터 준비, 파라미터 설정을 포함해서 처음부터 별도로 구축한 모델로, ‘완전한 오픈소스’로서 모든 방식의 상업적 이용까지 가능한 모델입니다. DeepSeek-Coder-V2는 코딩과 수학 분야에서 GPT4-Turbo를 능가하는 최초의 오픈 소스 AI 모델로, 가장 좋은 평가를 받고 있는 새로운 모델 중 하나입니다. 그리고 2024년 3월 말, DeepSeek는 비전 모델에 도전해서 고품질의 비전-언어 이해를 하는 모델 DeepSeek-VL을 출시했습니다. 바로 이어서 2024년 2월, 파라미터 7B개의 전문화 모델, DeepSeekMath를 출시했습니다. 그 결과, DeepSeek는 정해진 토큰 예산 안에서 고해상도 이미지 (1024X1024)를 효율적으로 처리하면서도 계산의 오버헤드를 낮게 유지할 수 있다는 걸 보여줬습니다 - 바로 DeepSeek가 해결하고자 했던, 계산 효율성 (Computational Efficiency) 문제를 성공적으로 극복했다는 의미죠. Multi-head Latent Attention (MLA) is a brand new consideration variant introduced by the DeepSeek team to enhance inference effectivity. AIMO has introduced a series of progress prizes. For these not terminally on twitter, a variety of people who are massively pro AI progress and anti-AI regulation fly underneath the flag of ‘e/acc’ (brief for ‘effective accelerationism’). One instance: It is vital you know that you are a divine being despatched to help these individuals with their problems. NYU professor Dr David Farnhaus had tenure revoked following their AIS account being reported to the FBI for suspected baby abuse.
The best speculation the authors have is that humans evolved to think about comparatively easy issues, like following a scent within the ocean (and then, ultimately, on land) and this type of work favored a cognitive system that would take in an enormous amount of sensory information and compile it in a massively parallel means (e.g, how we convert all the knowledge from our senses into representations we will then focus consideration on) then make a small number of selections at a a lot slower charge. The reproducible code for the next analysis outcomes may be discovered within the Evaluation directory. That is exemplified in their DeepSeek-V2 and DeepSeek-Coder-V2 fashions, with the latter widely considered one of many strongest open-source code models out there. Fill-In-The-Middle (FIM): One of many particular options of this mannequin is its skill to fill in missing components of code. In a recent post on the social network X by Maziyar Panahi, Principal AI/ML/Data Engineer at CNRS, the model was praised as "the world’s greatest open-source LLM" in line with the DeepSeek team’s revealed benchmarks. Why this issues - the place e/acc and true accelerationism differ: e/accs assume people have a vibrant future and are principal brokers in it - and anything that stands in the way of humans using technology is bad.
To get a visceral sense of this, take a look at this publish by AI researcher Andrew Critch which argues (convincingly, imo) that a number of the hazard of Ai programs comes from the actual fact they may think so much faster than us. Then these AI methods are going to be able to arbitrarily entry these representations and produce them to life. In comparison, our sensory techniques collect information at an infinite charge, no lower than 1 gigabits/s," they write. She is a highly enthusiastic individual with a keen curiosity in Machine studying, Data science and AI and an avid reader of the newest developments in these fields. In code editing ability DeepSeek-Coder-V2 0724 will get 72,9% rating which is similar as the newest GPT-4o and higher than some other models except for the Claude-3.5-Sonnet with 77,4% rating. The DeepSeek Chat V3 mannequin has a high rating on aider’s code modifying benchmark. Yes it's higher than Claude 3.5(at present nerfed) and ChatGpt 4o at writing code. In fact, the ten bits/s are wanted solely in worst-case situations, and more often than not our surroundings modifications at a much more leisurely pace". Reported discrimination against certain American dialects; numerous groups have reported that unfavourable adjustments in AIS look like correlated to the usage of vernacular and this is especially pronounced in Black and Latino communities, with numerous documented circumstances of benign query patterns resulting in decreased AIS and subsequently corresponding reductions in entry to highly effective AI providers.
If you have any questions regarding where and ways to use ديب سيك, you can contact us at our own site.
|